Vascular Access in the Lower Limb: PTFE Grafts

Abords vasculaires aux membres inférieurs. Le pontage PTFE

Chris Gibbons
Morriston Hospital, Swansea
I have **no financial relationships** to disclose.

Chris Gibbons

je n’ai **aucune relation financière** à déclarer.
Why access in the leg?

Upper limb access preferred but not always possible
Disadvantages of leg AV access

- Increased infection
- Higher incidence of vascular disease
- Previous DVT
- Greater risk of steal
- Less acceptable for patients
Why access in the leg?

- Central venous occlusion or stenosis
Why access in the leg?

- No upper limb access sites remaining
Options

• Autogenous
 – LSV
 – Femoral vein

• Prosthetic
Prosthetic or Autogenous?

- Long saphenous vein not always available and has poor patency
- Femoral vein usually available but has very high flow and greater risk of steal
Prosthetic or Autogenous?

Against Prosthetic
- Greater infection risk (18.4% vs 1.6%)
- Increased incidence of stenosis and thrombosis (1yr 1st patency 48% vs 83%; 2nd patency 69% vs 93%)
- More revisions required

Pro Prosthetic
- Early Cannulation
- Lower risk of steal (7% vs 21%)

• No suitable leg veins (e.g. previous femoral DVT, LSV small or previously removed)

• Early cannulation is needed because of poor CVC access

• When there is a high risk of steal
 — Diabetics
 — Peripheral vascular disease
Which prosthetic graft?

• PTFE
 – Conventional e.g. Impra, Goretex
 – Slider graft e.g. Atrium
 – Stepped, or tapered grafts
 – Distal expansion e.g. Venoflo
 – Externally or internally supported
 e.g. Centerflex, Interring
• PTFE
 – Gelatin impregnated (allowing rifampicin bonding) e.g. Vascutek

 – Heparin bonded e.g. Propaten

 – Self-sealing grafts for early cannulation
 e.g. Flixene, Acuseal
Which prosthetic graft?

- Polyurethane grafts Vectra

- Biological grafts
 - Bovine mesenteric vein Procol
 - Bovine carotid artery Artergraft
 - Bovine ureter Synergraft
Upper thigh loops

- From the femoral triangle
 - CFA- CFV
 - SFA – SFV/CFV
 - Using branch of CFA (e.g. profunda or lateral circumflex)
Graft Configurations

Mid-thigh loops

- SFA-SFV (allows femoral CVC and more proximal access, but complication similar to upper thigh loops)
Graft Configurations

Straight grafts

• Popliteal artery – CFV/SFV
 – ? Higher incidence of steal

• SFA-popliteal vein
Graft Configurations

- Ext iliac artery – external iliac vein
- Fem-fem crossover AV graft
- Exotic grafts
 - Axillo- femoral
 - Axillo –iliac
 - Axillo-popliteal
Graft Configurations

- Fem-fem arterio-arterial
Complications

• Stenosis
 – PTA
 – Stents
 – Covered stents
 – Surgical revision
• Thrombosis
 – Thrombolysis + PTA/covered stent
 – Thromboaspiration
 – Combined chemical and mechanical thrombectomy
 – Surgical thrombectomy + revision
Complications

• Infection
 – Localised
 • Antibiotics
 • Vacuum dressing
 • Localised bypass + excision
 – Complete
 • Total graft excision
 • Subtotal graft excision
Complications

- Steal
 - Graft ligation
 - Banding
 - DRIL
 - Proximalisation of Arterial Insertion (PAI)
 - Amputation below AVG
• **Venous Hypertension**

 – Relatively uncommon

 – Usually caused by proximal venous thrombosis or stenosis

 – Thrombolysis + stent
Conclusions

• AV leg grafts occasionally necessary
• Allow early cannulation
• Less steal but more infection than femoral vein grafts
• Prosthetic graft preferred for PVD, diabetics and when central access difficult
Conclusions

- Mid thigh loop is probably best configuration
- Complications treated as in upper limb
- PAI possibly best to treat steal