CONTROVERSES ET ACTUALITES EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY JANUARY 23-25 2020

1AYU CLINIC

MARRIOTT RIVE GAUCHE & CONFERENCE CENTER | PARIS | FRANCE

FBEVAR for TAAAs

Gustavo S. Oderich MD

Professor of Surgery Director of Aortic Center Chair, Vascular and Endovascular Surgery Mayo Clinic, Rochester MN

Gustavo S. Oderich

- Consulting: Cook Medical, WL Gore, GE Healthcare, Syntactx
- Research support: Cook Medical and GE Healthcare

All consulting fees, honorarium and research grants paid to Mayo Clinic

WWW.CACVS.ORG

THE HOUSTON LEGACY

1,896 patients

Mortality 16%

SCI 10%

Experience with 1509 patients undergoing thoracoabdominal aortic operations

Lars G. Svensson, MD, PhD, E. Stanley Crawford, MD,[†] Kenneth R. Hess, MS, Joseph S. Coselli, MD, and Hazim J. Safi, MD, Houston, Texas

ASA PAPER

A Quarter Century of Organ Protection in Open Thoracoabdominal Repair

Anthony L. Estrera, MD, Harleen K. Sandhu, MD, MPH, Kristofer M. Charlton-Ouw, MD, Rana O. Afifi, MD, Ali Azizzadeh, MD, Charles C. Miller III, PhD, and Hazim J. Safi, MD

Outcomes of 3309 thoracoabdominal aortic aneurysm repairs

Joseph S. Coselli, MD,^{a,d,e} Scott A. LeMaire, MD,^{a,b,c,d,e} Ourania Preventza, MD,^{a,d,e} Kim I. de la Cruz, MD,^{a,d,e} Denton A. Cooley, MD,^d Matt D. Price, MS,^{a,d} Alan P. Stolz, MEd,^{a,d} Susan Y. Green, MPH,^{a,d} Courtney N. Arredondo, MSPH,^b and Todd K. Rosengart, MD^{a,c,d,e}

CONTROVERSES ET ACTUALITES EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY

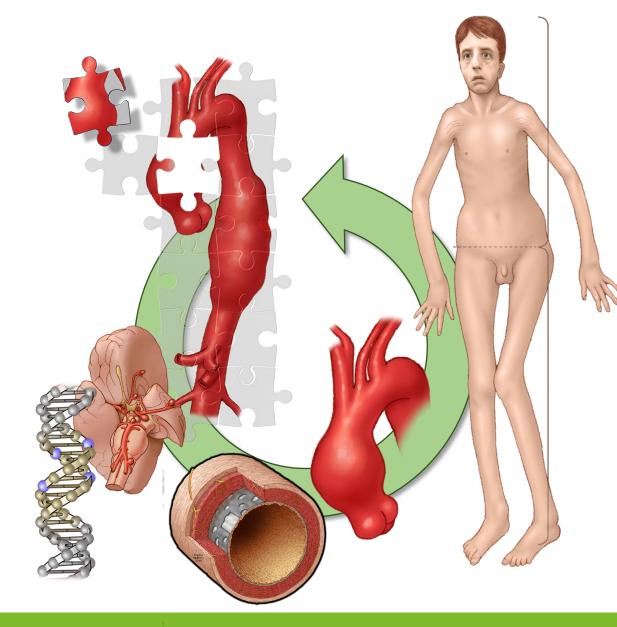
JANUARY 23-25 2020

MARRIOTT RIVE GAUCHE & CONFERENCE CENTER | PARIS | FRANCE WWW.CACVS.ORG Svensson L (Crawford) et al. J Vasc Surg 1993 Estrera A (Safi H) et al. Ann Surg 2015 Coselli et al. J Thorac Cardiovasc Surg

3,309 patients

Mortality 7%

SCI 10%


1,509 patients

Mortality 10%

SCI 16%

Choice of repair

- Genetically triggered disease
- Age/clinical risk
- Prior arch/TAA repair
- Landing zone
- Atheromatous debris
- Renal-mesenteric targets
- Iliofemoral access

ENDOVASCULAR TAAA REPAIR *Cleveland Clinic experience*

189 patients (Mean age, 71 yo) Extent I-IV TAAAs Elective Mortality 6%

Contemporary Analysis of Descending Thoracic and Thoracoabdominal Aneurysm Repair

A Comparison of Endova

Roy K. Greenberg, MD; Qingsheng Lu, MD; Michael C. Moor, MD; Adrian V. Herr 406 patients (Mean age, 71 yo) Extent I-IV TAAAs Elective Mortality 3%

Branched endo

Roy Greenberg, MD, Matthew Eagleton, MD, and Tara Mastracci, MD

Fenestrated and branched endovascular aneurysm repair outcomes for type II and III thoracoabdominal aortic aneurysms

Matthew J. Eagleton, MD, Matthew Follansbee, BS, Katherine Wolski, MPH, Tara Mastracci, MD, and Yuki Kuramochi, BScN, Cleveland, Ohio

354 patients (Mean age, 74 yo) Only Extent II-III TAAAs **Elective Mortality 4.8%**

MAYO CLINIC

Greenberg RK et al. Circulation 2008 Greenberg RK et al. J Thorac Cardiovasc Surg 2008

Eagleton M et al. J Vasc Surg 2016 CONTROVERSES ET ACTUALITES EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY

JANUARY 23-25 2020

MARRIOTT RIVE GAUCHE & CONFERENCE CENTER | PARIS | FRANCE WWW.CACVS.ORG

RENAL FENS v BRANCHES

606 patients with 1134 renal Fens

Twelve-year results of fenestrated endografts for juxtarenal and group IV thoracoabdominal aneurysms

Tara M. Mastracci, MD, Matthew J. Eagleton, MD, Yuki Kuramochi, BScN, Shona Bathurst, and Kathering Walst: MDH Claudand Ol

n (Percent)

Renal stent occlusion

22 (1.9%)

133 patients with 235 renal branches

Standard off-the-shelf versus custom-made multibranched thoracoabdominal aortic stent grafts

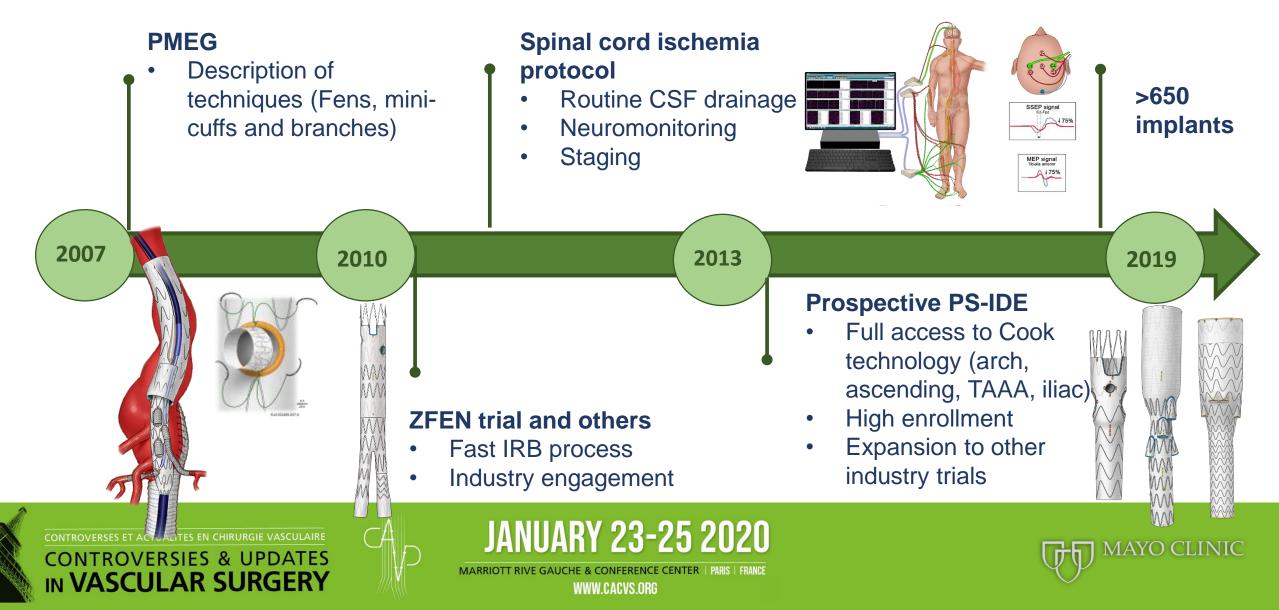
Charlene C. Fernandez, BS, Julia D. Sobel, BS, Warren J. Gasper, MD, Shant M. Vartanian, MD, Linda M. Reilly, MD, Timothy A. M. Chuter, MD, and Jade S. Hiramoto, MD, San Francisco, Calif

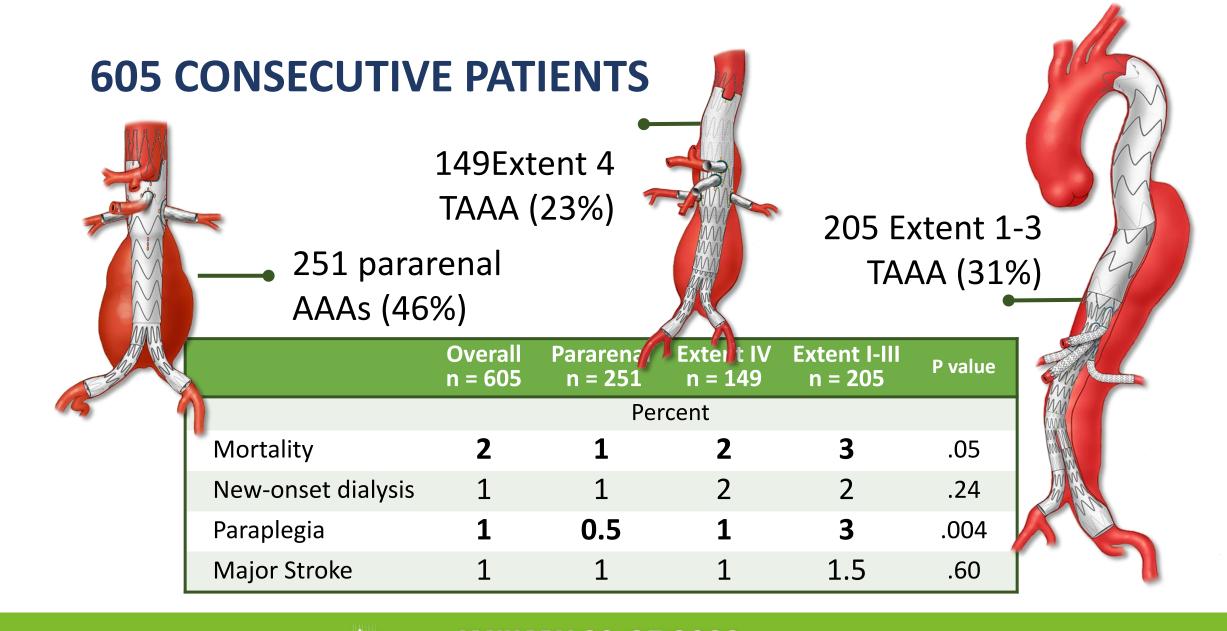
n (Percent)

21 (18%)

Occlusion or stenosis requiring intervention

IAYO CLINIC





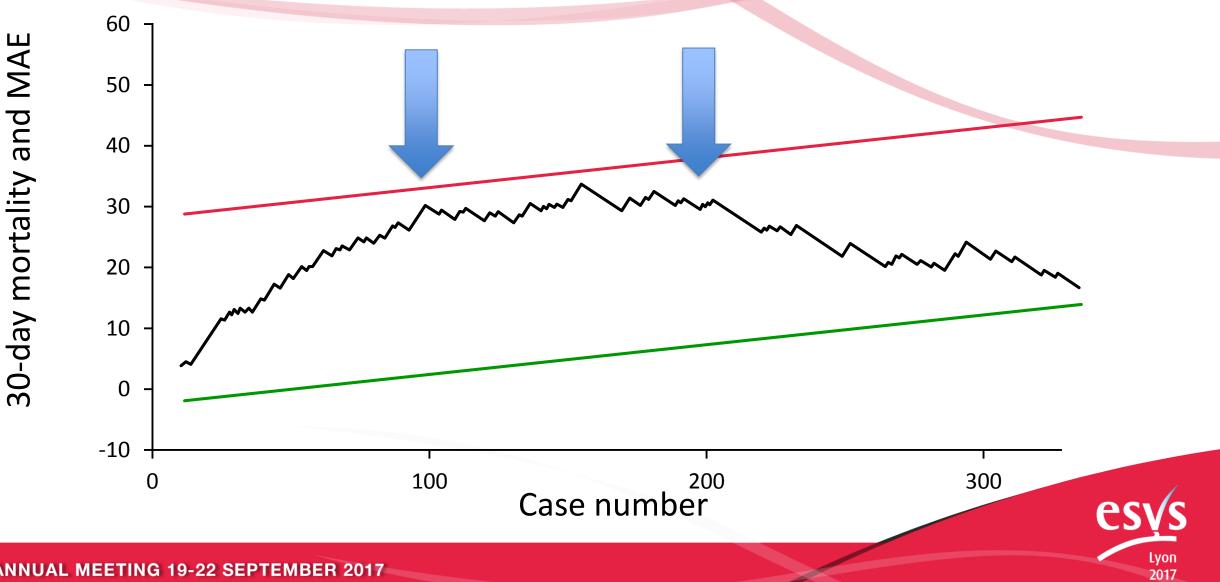
MAYO CLINIC F-BEVAR PROGRAM

WWW.CACVS.ORG

MARRIOTT RIVE GAUCHE & CONFERENCE CENTER

Learning Curve of Fenestrated and Branched Endovascular Aortic Repair for Pararenal and Thoracoabdominal Aortic Aneurysms

Gustavo S. Oderich, Giuliano de A. Sandri, Emanuel T.R. Tenorio, Mauricio S. Ribeiro, Jan Hofer, Thanila Macedo, Stephan Cha, Peter Gloviczki, Aleem K. Mirza


	All n = 334	Q1 n = 81	Q2 n = 84	Q3 n = 85	Q4 n = 84	P value
30 day mortality	2%	6%	2%	1%	0%	0.009
Major adverse event	33%	58%	32%	21%	21%	<.001
30-day reinterventions	9%	9%	10%	6%	2%	<.001
				8	AT	a start

Mirza A et al (Oderich). J Vasc Surg (in press)

Cumulative sum (CUSUM)

ANNUAL MEETING 19-22 SEPTEMBER 2017

PHYSICIAN-SPONSORED INVESTIGATIONAL DEVICE EXEMPTION (IDE) STUDY

JANUARY 23-25 2020

WWW.CACVS.ORG

MARRIOTT RIVE GAUCHE & CONFERENCE CENTER

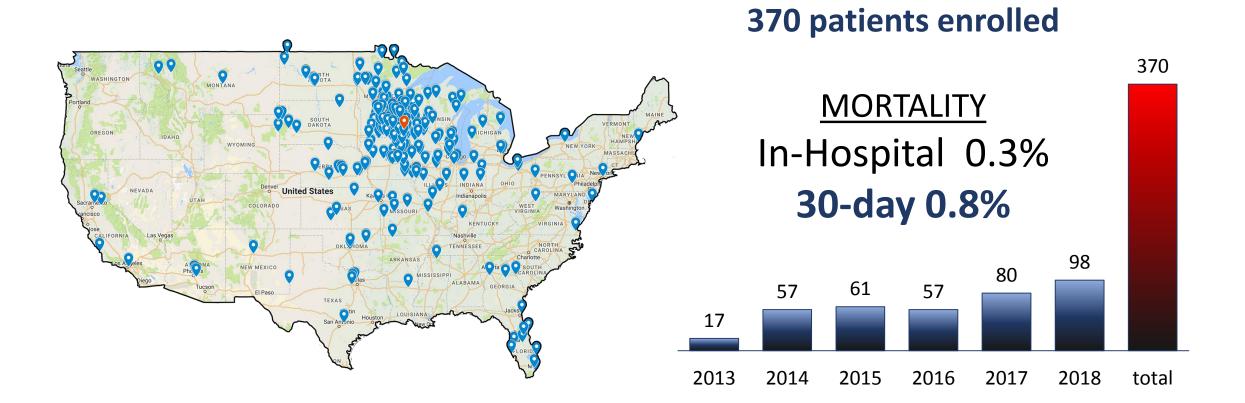
Prospective, non-randomized study Inclusion criteria

Thoracoabdominal and aortic arch aneurysms and chronic dissections

Protocol design

- QOL questionnaires, imaging and clinical exam at dismissal, 2 months, 6 months and annually for 5 years
- Independent monitoring and clinical event adjudication
- Annual FDA reporting ٠

Thoracoabdominal aortic aneurysm Arm Arch aortic aneurysm Arm

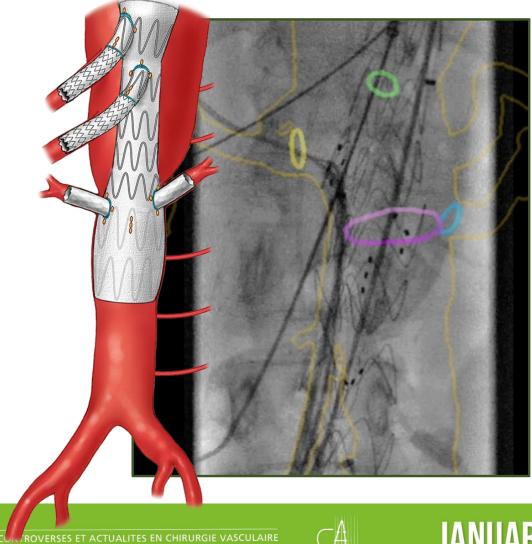

MAYO CLINIC

ClinicalTrials.gov - NCT01937949 and NCT02089607

MAYO CLINIC F-BEVAR PROSPECTIVE NON-RANDOMIZED PHYSICIAN-SPONSORED IDE STUDY

CONTROVERSES ET ACTUALITES EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY

WWW.CACVS.ORG

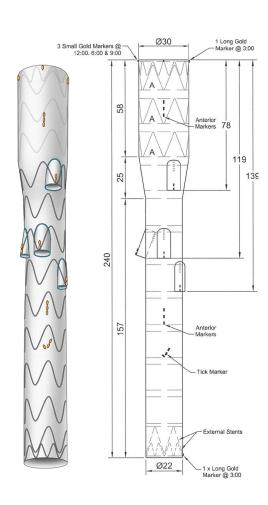

MARRIOTT RIVE GAUCHE & CONFERENCE CENTER



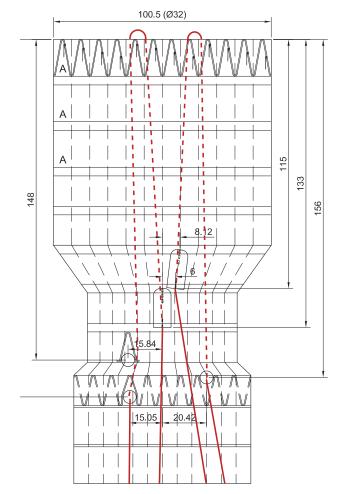
- Patient specific 3-5 fenestrations or branches
- Low profile (18 or 20Fr)
- Optional preloaded renal/mesenteric guidewires

Branches vs fenestrations

CONTROVERSES ET ACTUALITES EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY

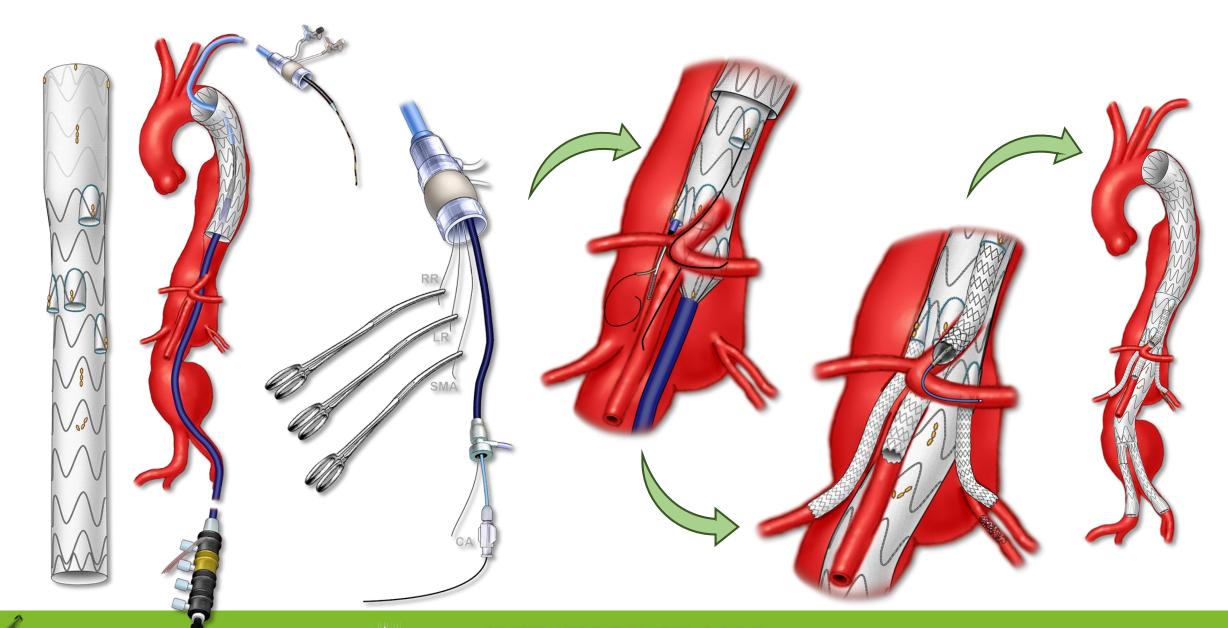


MARRIOTT RIVE GAUCHE & CONFERENCE CENTER | PARIS | FRANCE WWW.CACVS.ORG


Preloaded guidewire system

CONTROVERSIES & UPDATES

IN VASCULAR SURGERY

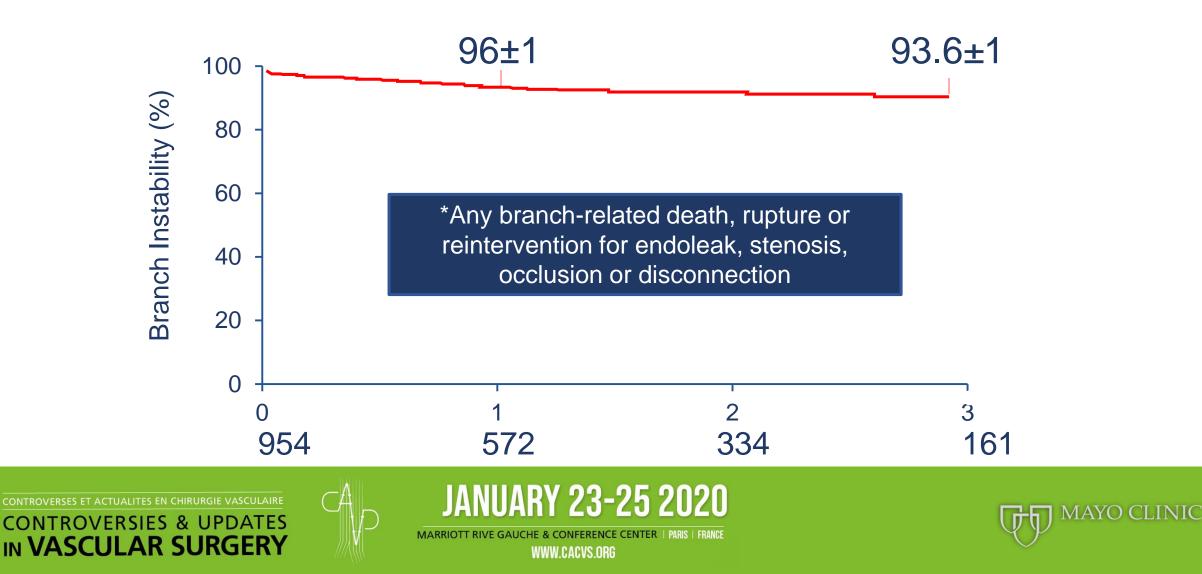


MARRIOTT RIVE GAUCHE & CONFERENCE CENTER | PARIS | FRANCE

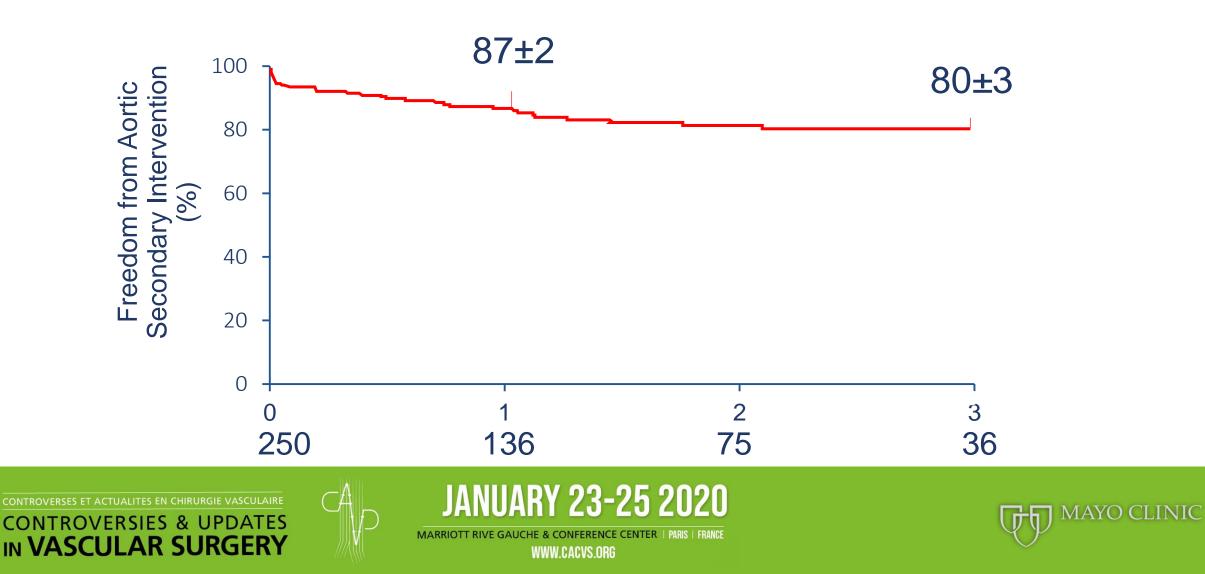
WWW.CACVS.ORG

JANUARY 23-25 2020

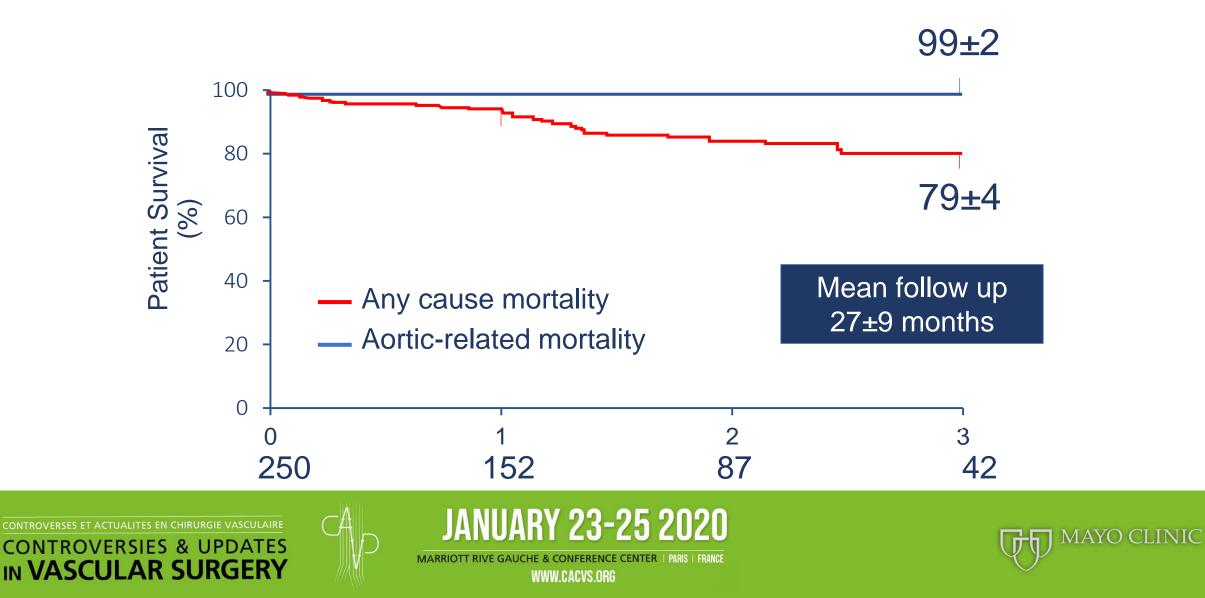
MARRIOTT RIVE GAUCHE & CONFERENCE CENTER | PARIS | FRANCE



MARRIOTT RIVE GAUCHE & CONFERENCE CENTER | PARIS | FRANCE



TARGET VESSEL INSTABILITY*


All renal-mesenteric target vessels

AORTIC REINTERVENTION

PATIENT SURVIVAL

3x reduction in Effective Dose 3892 ± 2258 To **1213 ± 946 mGy**

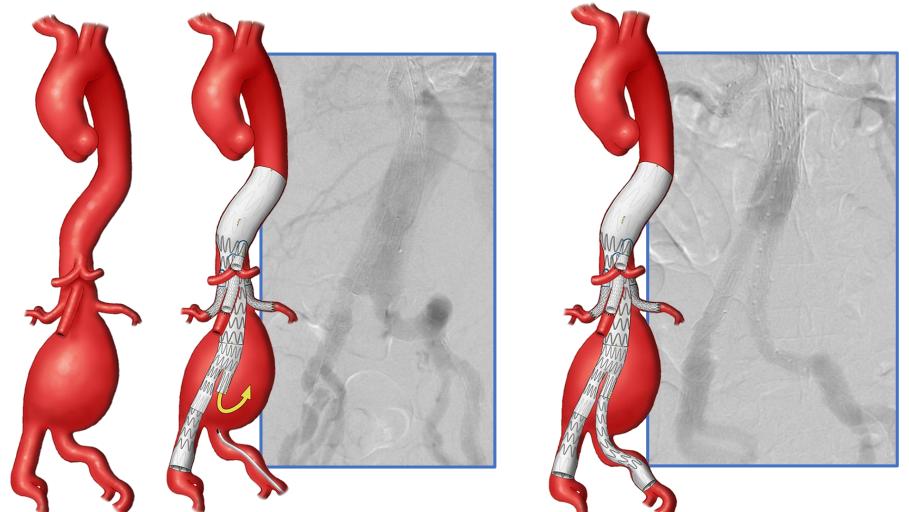
SERCHTOLD .

3x reduction in Operator Dose 26 ± 3 To 9 ± 4 mR/month/case

CONE BEAM CT PROTOCOL

MAYO CLINIC

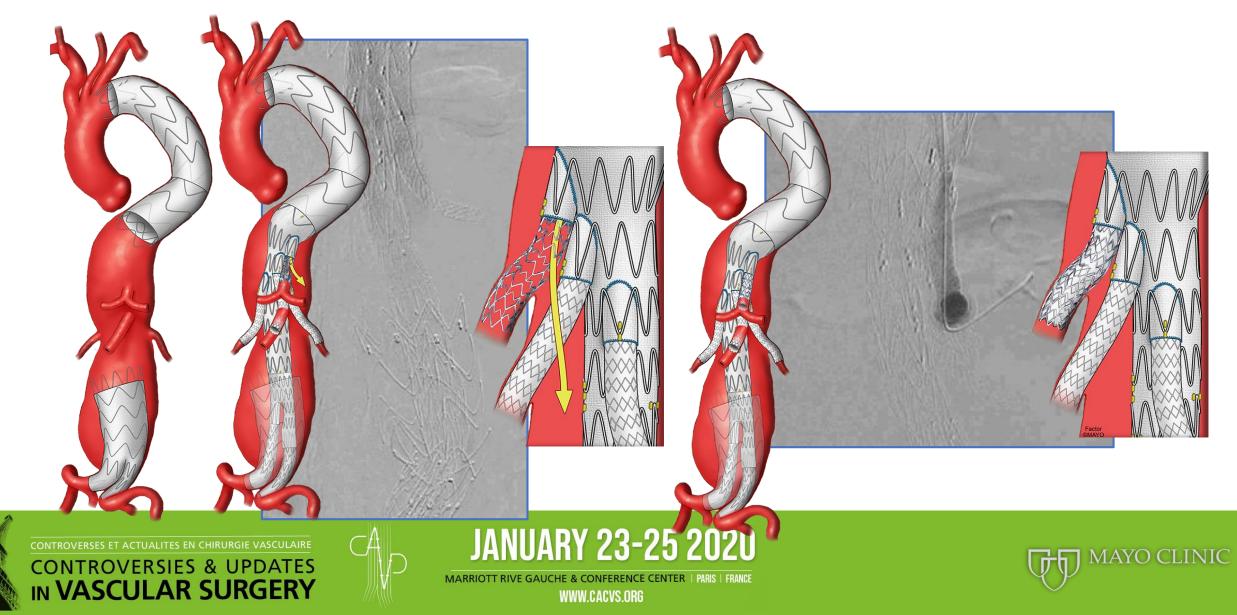
MARRIOTT RIVE GAUCHE & CONFERENCE CENTER | PARIS | FRANCE WWW.CACVS.ORG Prospective assessment of a protocol using neuromonitoring, early limb reperfusion and selective temporary aneurysm sac perfusion to prevent spinal cord injury during fenestrated-branched endovascular aortic repair

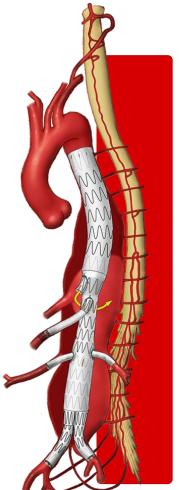

Emanuel R. Tenorio MD PhD, Gustavo S. Oderich MD, Jussi M. Kärkkäinen MD PhD, Bernardo C. Mendes MD, Jan Hofer RN, Randall R. DeMartino MD, Peter V. Banga MD and Stephen Cha MS.

Mayo Clinic Aortic Center, Rochester, MN, United States

ESVS 32nd Annual Meeting 24–28 September 2018

TASP via contralateral gate of bifurcated device




MARRIOTT RIVE GAUCHE & CONFERENCE CENTER | PARIS | FRANCE

TASP via directional branch using bare metal stent

TEMPORARY ANEURYSM SAC PERFUSION (TASP)

9/232 patients (4%) required sac perfusion Mean closing time, 22±16 days

	Aneurysm Extent	First Exam	Day of Sac closure	Exam After Sac Closure	Exam at 30 Days Follow Up
1	Extent II	Grade 0	Day 45	No	Grade 0
2	Extent II	Grade 3c	Day 30	No	Grade 2
3	Extent III	Grade 0	Day 22	No	Grade 0
4	Extent II	Grade 0	Day 26	Grade 3a	Grade 0
5	Extent II	Grade 0	Day 46	No	Grade 0
6	Extent II	Grade 0	Day 10	No	Grade 0
7	Extent II	Grade 3c	Day 14	No	Grade 0
8	Extent III	Grade 0	Day 4	No	Grade 0
9	Extent IV	Grade 0	Day 2	No	Grade 0

MARRIOTT RIVE GAUCHE & CONFERENCE CENTER | PARIS | FRAI WWW.CACVS.ORG

Spinal cord injury by aneurysm extent

One (0.5%) 30-day death

(Intra-cranial hemorrhage from spinal drain complication)

	Overall n = 232	Pararenal n = 84	Extent IV n = 62	Extent III n = 24	Extent I-II n = 62	P value
			n (%)			
Any major adverse event	53 (23)	17 (20)	16 (26)	3 (13)	17 (27)	.41
Any spinal cord injury	10 (4)	1 (1)	0	3 (13)	6 (10)	.002
Grading classification						
1-2 (paraparesis)	4 (2)	0	0	2 (8)	2 (3)	.01
3a-c (paraplegia)	6 (3)	1 (1)	0	1 (4)	4 (7)	.08
Permanent paraplegia	2 (1)	1 (1)	0	0	1 (2)	.73

Probable mechanism of spinal cord injury

10 patients (4%)

	n	%
Hemodynamic compromise	6	60
Embolic	2	20
Spinal hematoma	2	20

WWW.CACVS.ORG

Cerebrospinal Fluid Drainage Complications During First Stage and Completion Fenestrated-Branched Endovascular Aortic Repair

Jussi M. Kärkkäinen, Nolan Cirillo-Penn, Indrani Sen, Emanuel Tenorio, William Mauermann, George Gilkey, Timothy Kaufmann and Gustavo Oderich

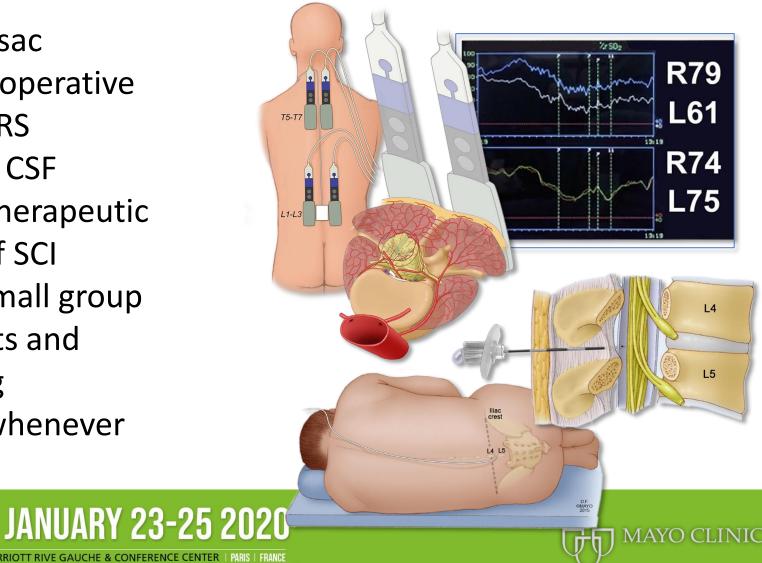
From the Society for Vascular Surgery

Cerebrospinal fluid drainage complications during first stage and completion fenestrated-branched endovascular aortic repair

Jussi M. Kärkkäinen, MD, PhD,^a Nolan C. Cirillo-Penn, MD,^a Indrani Sen, MD,^a Emanuel R. Tenorio, MD, PhD,^a William J. Mauermann, MD,^b George D. Gilkey, MD,^b Timothy J. Kaufmann, MD, MS,^c and Gustavo S. Oderich, MD,^a Rochester, Minn

J Vasc Surg 2019

293 consecutive IDE trial patients during 5-year study period


187 pts with 240 endovascular procedures with CSF drain

CSFD-related complications	n	% / patients
Any complication	21	10
Severe	8	4
Spinal hematoma	6	3
Intracranial hemorrhage	3	2
Moderate	9	5
Minor	4	1

EVOLUTION OF SCI PREVENTION PROTOCOL

- Recommend temporary sac perfusion based on intraoperative neuromonitoring and NIRS
- Eliminated prophylactic CSF drainage and use only therapeutic drainage if symptoms of SCI
- Restrict placement to small group (<5) CV anesthesiologists and neuro-radiologists using fluoroscopic guidance whenever possible

SOCIETY FOR CLINICAL VASCULAR SURGERY BOCARATON 47TH ANNUAL SYMPOSIUM | MARCH 16 - 20, 2019

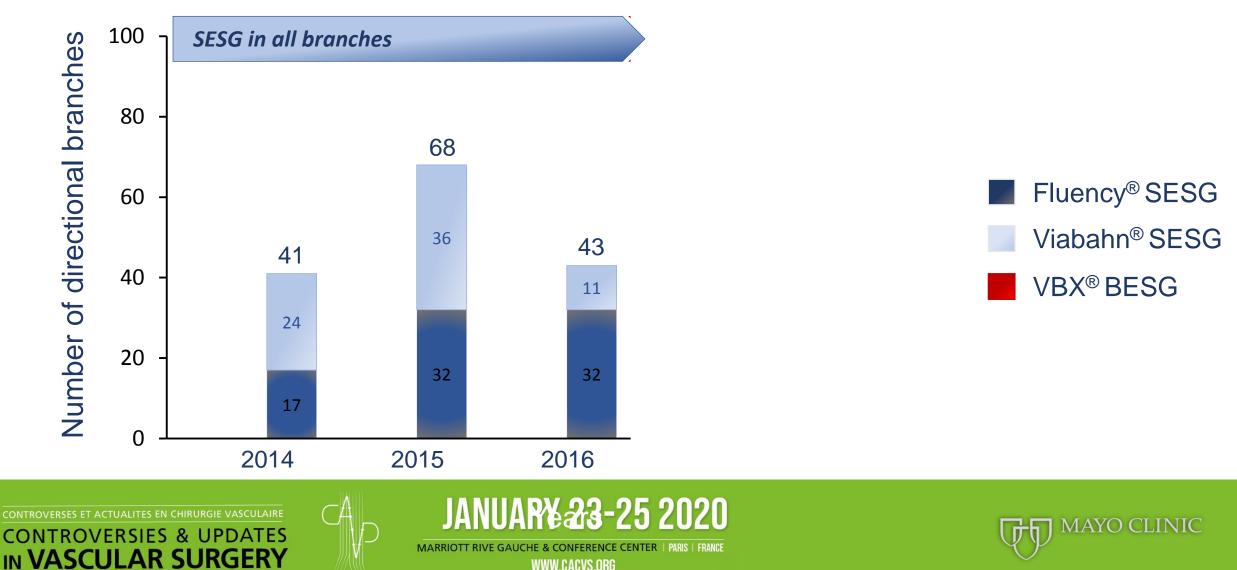
OUTCOMES OF DIRECTIONAL BRANCHES USING SELF-EXPANDABLE OR BALLOON-EXPANDABLE STENT GRAFTS DURING ENDOVASCULAR TAAA REPAIR

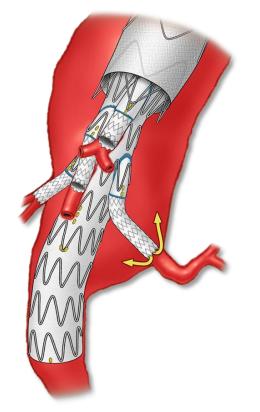
From the Society for Clinical Vascular Surgery

Outcomes of directional branches using self-expandable or balloon-expandable stent grafts during endovascular repair of thoracoabdominal aortic aneurysms

Emanuel R. Tenorio, MD, PhD, Jussi M. Kärkkäinen, MD, PhD, Bernardo C. Mendes, MD, Randall R. DeMartino, MD, Thanila A. Macedo, MD, Alisa Diderrich, RN, Jan Hofer, RN, *and* Gustavo S. Oderich, MD, *Rochester, Minn*

Tenorio et al (Oderich). J Vasc Surg 2019





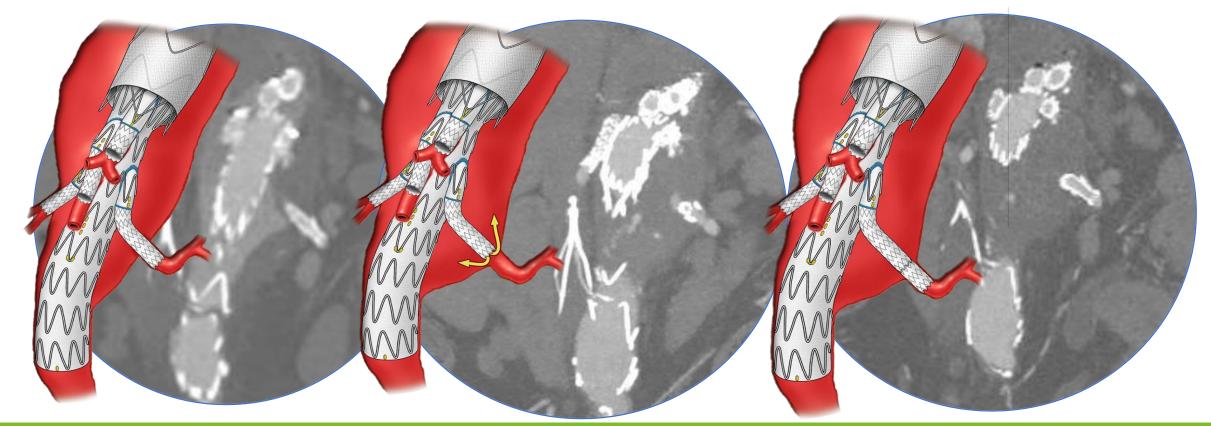
SELECTION OF BRIDGING STENT

TARGET ARTERY OUTCOMES

• No branch-related rupture or death

	SESG n=62/176	BESG n=54/159	P value
1- Year Kaplan-Meier estimates			
All target arteries (n = 335)			
Primary patency	97 ± 2	95 ± 2	.004
Freedom from target artery type IC/IIIC	98 ± 1	92 ± 3	.003
Freedom from target artery reintervention	98 ± 1	88 ± 4	<.0001
Renal artery targets (n = 122)			
Freedom from target artery type IC/IIIC	98 ± 2	83 ± 6	<.0001
Freedom from target artery reintervention	98 ± 1	88 ± 4	<.0001

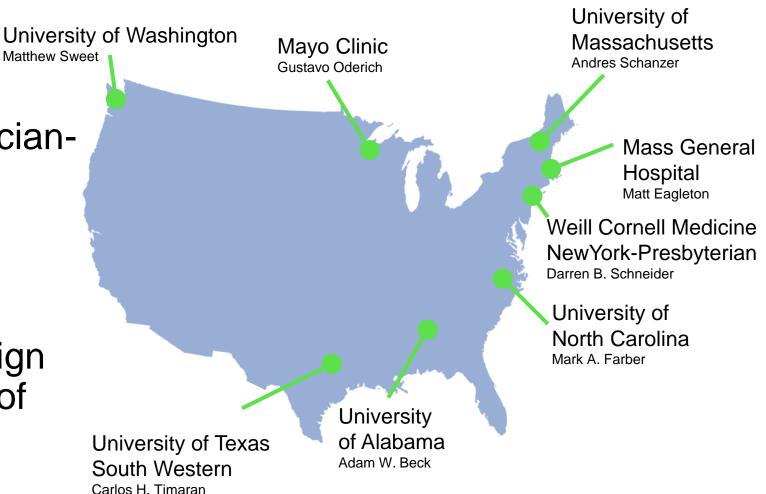
CONTROVERSES ET ACTUALITES EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY



WWW.CACVS.ORG

ANALYSIS OF 9 TYPE IC ENDOLEAKS

• 7 renal arteries (6 Left), 7 inner aortic diameter > 30mm, 5 renal arteries upgoing orientation


MARRIOTT RIVE GAUCHE & CONFERENCE CENTER | PARIS | FRANCE WWW.CACVS.ORG

US FENESTRATED-BRANCHED RESEARCH CONSORTIUM

Matthew Sweet

- 8 US sites
- Prospective, physiciansponsored studies
- Independent monitoring, FDA audited
- Similar device design with selective use of fenestrations and branches

WWW.CACVS.ORG

Patient enrollmemt

Site	Principal Investigator	Patients enrolled
Mayo Clinic	Gustavo S. Oderich	390
University of North Carolina	Mark Farber	274
University of Massachusetts	Andres Schanzer	221
UT Southwestern	Carlos Timaran	166
Cornell-Weil Medical Center	Darren Schneider	107
University of Alabama	Adam Beck	77
University of Washington	Matt Sweet	52
Mass General Hospital - Harvard	Matt Eagleton	40
Total		1327

WWW.CACVS.ORG

Aneurysm extent

Classification	n	30-day mortality (%)
Juxta or pararenal	33	1.2
Extent I TAAA	72	2.4
Extent II TAAA	241	2.1
Extent III TAAA	197	1.8
Extent IV TAAA	429	1.9
Total	1327	1.7

121 patients treated for chronic post-dissection TAAAs 30-day mortality, 1.6%

FEVAR long-term effectiveness

Prevention of aortic related death or rupture?

Author	Study Design	n	30-day mortality	Aneurysm Rupture	Aortic-Related Death	Follow up (years)
Mastracci et al (JVS 2013)	Prospective IDE	650	1%	2%	2%	8
Oderich et al (JVS 2014)	Prospective PMA	67	1.5%	0%	1.5%	5
Oderich et al (JVS 2016)	Prospective IDE	127	0%	0%	0%	3.5
Katsargyris et al (JVS 2017)	Retrospective	384	0.5%	0.2%	1%	2
Soler et al (JVS 2019)	Retrospective	57	0%	0%	0%	2
US F-BEVAR Consortium	Registry of IDE	661	2%	0.5%	2.5%	2.5

WWW.CACVS.ORG

CONCLUSIONS

- F-BEVAR have expanded the indications of EVAR to patients with TAAAs
- The technique is safe, effective, and has reduced morbidity and mortality associated with conventional open surgical repair
- Main limitations are access to technology, physician training, cost, surveillance and need for secondary reinterventions

